0


社交媒体对象描述性注释的有用用户生成评论的属性、预测和流行率

Properties, Prediction, and Prevalence of Useful User-Generated Comments for Descriptive Annotation of Social Media Objects
课程网址: https://videolectures.net/videos/icwsm2013_momeni_media_objects  
主讲教师: Elaheh Momeni
开课单位: 信息不详。欢迎您在右侧留言补充。
开课时间: 2014-04-03
课程语种: 英语
中文简介:
最近,在线社交媒体中用户生成的评论作为照片或视频等数字对象的通用描述性注释的可行来源,越来越受到关注。然而,由于用户的专业知识水平不同,他们的评论质量可能从非常有用到完全无用不等。我们的目标是为从公共数字对象集合中整理有用的用户生成评论提供自动化支持。在构建了有用和无用评论的众包黄金标准后,我们使用标准的机器学习方法开发了一个有用性分类器,除了作者及其社交媒体活动的额外语言属性外,还探索了表层、句法、语义和基于主题的特征的影响。然后,我们调整了一个现有的流行率检测模型,该模型使用学习到的分类器来调查两个流行社交媒体平台的评论文化中的模式。我们发现,有用评论的流行程度是特定于平台的,并进一步受到所评论媒体对象的实体类型(人、地点、事件)、时间段(例如事件发生的年份)以及评论者之间两极分化程度的影响。
课程简介: User-generated comments in online social media have recently been gaining increasing attention as a viable source of general-purpose descriptive annotations for digital objects like photos or videos. Because users have different levels of expertise, however, the quality of their comments can vary from very useful to entirely useless. Our aim is to provide automated support for the curation of useful user-generated comments from public collections of digital objects. After constructing a crowd-sourced gold standard of useful and not useful comments, we use standard machine learning methods to develop a usefulness classifier, exploring the impact of surface-level, syntactic, semantic, and topic-based features in addition to extra-linguistic attributes of the author and his or her social media activity. We then adapt an existing model of prevalence detection that uses the learned classifier to investigate patterns in the commenting culture of two popular social media platforms. We find that the prevalence of useful comments is platform-specific and is further influenced by the entity type of the media object being commented on (person, place, event), its time period (e.g., year of an event), and the degree of polarization among commenters.
关 键 词: 在线社交媒体; 实体类型; 公共数字
课程来源: 视频讲座网
数据采集: 2025-04-23:yuhongrui
最后编审: 2025-04-23:yuhongrui
阅读次数: 1