预测面对面接触的新见解和方法New Insights and Methods for Predicting Face-To-Face Contacts |
|
课程网址: | https://videolectures.net/videos/icwsm2013_scholz_new_insights |
主讲教师: | Christoph Scholz |
开课单位: | 信息不详。欢迎您在右侧留言补充。 |
开课时间: | 2014-04-03 |
课程语种: | 英语 |
中文简介: | 预测社交网络中的新链接是一项具有挑战性的任务。本文主要研究如何利用在线社交网络(如DBLP中的合著网络)的信息和一些节点级属性来预测面对面空间邻近网络中的链接。首先,我们分析了链路预测任务的影响因素。然后,我们提出了一种新的方法,将来自不同网络的信息和节点级属性相结合,用于预测任务:我们引入了一种基于根随机游走的无监督链接预测方法,并表明它的性能优于最先进的无监督链路预测方法。我们使用三个真实世界的数据集进行了评估。此外,我们还讨论了我们的结果以及我们在链接预测和人类接触行为领域收集的见解的影响 |
课程简介: | The prediction of new links in social networks is a challeng- ing task. In this paper, we focus on predicting links in net- works of face-to-face spatial proximity by using information from online social networks, such as co-authorship networks in DBLP, and a number of node level attributes. First, we analyze influence factors for the link prediction task. Then, we propose a novel method that combines information from different networks and node level attributes for the pre- diction task: We introduce an unsupervised link prediction method based on rooted random walks, and show that it out- performs state-of-the-art unsupervised link prediction meth- ods. We present an evaluation using three real-world datasets. Furthermore, we discuss the impact of our results and of the insights we glean in the field of link prediction and human contact behavior. |
关 键 词: | 社交网络; 空间邻近网络; 数据集 |
课程来源: | 视频讲座网 |
数据采集: | 2025-04-24:yuhongrui |
最后编审: | 2025-04-24:yuhongrui |
阅读次数: | 2 |