0


基于图p-Laplacian的谱聚类

Spectral Clustering Based on the Graph p-Laplacian
课程网址: https://videolectures.net/videos/icml09_buhler_scb  
主讲教师: Thomas Bühler
开课单位: 会议
开课时间: 2009-08-26
课程语种: 英语
中文简介:
我们提出了一种使用图p-Laplacian的谱聚类的广义版本,这是标准图拉普拉斯的非线性推广。我们证明了图的第二特征向量p-Laplacian在归一化松弛和Cheeger切割之间插值。此外,我们证明了在极限为p!1通过对图p-Laplacian的第二特征向量进行阈值处理得到的切割收敛到最佳Cheeger切割。此外,我们提供了一种高效的数值方案来计算图p-Laplacian的第二特征向量。实验表明,通过p-谱聚类发现的聚类至少与普通谱聚类一样好,但通常会带来明显更好的结果。
课程简介: We present a generalized version of spectral clustering using the graph p-Laplacian, a nonlinear generalization of the standard graph Laplacian. We show that the second eigenvector of the graph p-Laplacian interpolates between a relaxation of the normalized and the Cheeger cut. Moreover, we prove that in the limit as p ! 1 the cut found by thresholding the second eigenvector of the graph p-Laplacian converges to the optimal Cheeger cut. Furthermore, we provide an efficient numerical scheme to compute the second eigenvector of the graph p- Laplacian. The experiments show that the clustering found by p-spectral clustering is at least as good as normal spectral clustering, but often leads to signifi cantly better results.
关 键 词: 拉普拉斯; 非线性推广; 归一化松弛
课程来源: 视频讲座网
数据采集: 2025-04-25:liyq
最后编审: 2025-04-25:liyq
阅读次数: 7