0


讲座13:潜在的能源考虑导出简谐运动

Lecture 13: Potential Energy - Energy Considerations to Derive Simple Harmonic Motion
课程网址: http://videolectures.net/mit801f99_lewin_lec13/  
主讲教师: Walter H. G. Lewin
开课单位: 麻省理工学院
开课时间: 2008-10-10
课程语种: 英语
中文简介:
** 1。引力势能:**回顾了靠近地球表面和离地球很远的引力势能的空间依赖性。重力将物体拉向减小势能的方向。 ** 2。从F(x)和副Versa计算U(x):**导出弹簧系统的势能U(x),并绘制为位移x的函数。如果函数U(x)已知,则可以导出力:F(x)= - dU(x)/ dx。 ** 3。平衡点:**势能的最小值和最大值是净力为零的位置。在稳定平衡点,U(x)的二阶导数为正,在不稳定平衡点,二阶导数为负。 ** 4。抛物线势能井==> SHO:**使用弹簧的势能的抛物线形状和机械能的守恒,表明弹簧上的质量振荡为简谐振子(SHO)。 ** 5。圆形势能井==> SHO:**使用圆形势能阱和机械能守恒,可以看出,对于小角度,振荡是简谐的。使用具有非常大半径的圆形轨道来证明这一点。 ** 6。在圆形轨道上滑动==> SHO:**圆形空气轨道的已知半径用于预测滑动物体的振荡周期(小角度!),并进行测量以确认这一点。对于在另一个圆形轨道中滚动的滚珠轴承,重复该过程。现在不能以与空气轨道的情况类似的方式预测振荡周期。为什么? ==>不,它与摩擦无关!
课程简介: **1. Gravitational Potential Energy:** A review is given of the spatial dependence of the gravitational potential energy both close to the Earth's surface and at large distances from Earth. The gravitational force pulls objects in the direction of decreasing potential energy. **2. Calculating U(x) from F(x) and Vice Versa:** The potential energy, U(x), of a spring system is derived and sketched as a function of displacement x. The force can be derived if the function U(x) is known: F(x)=-dU(x)/dx. **3. Equilibrium Points:** The minima and maxima of potential energy are positions where the net force is zero. At the stable equilibrium points the 2nd derivative of U(x) is positive, at the unstable equilibrium points the 2nd derivative is negative. **4. Parabolic Potential Energy Well ==> SHO:** Using the parabolic shape of the potential energy for a spring, and the conservation of mechanical energy, it is shown that the mass on the spring oscillates as a simple harmonic oscillator (SHO). **5. Circular Potential Energy Well ==> SHO:** Using a circular potential energy well and the conservation of mechanical energy, it is shown that for SMALL ANGLES, the oscillations are simple harmonic. A circular track with very large radius is used to demonstrate this. **6. Sliding on a Circular Track ==> SHO:** The known radius of a circular air track is used to predict the period of oscillation of a sliding object (small angles!), and a measurement is made to confirm this. The process is repeated for a ball bearing rolling in another circular track. The period of oscillation can now not be predicted in a similar way as was possible in the case of the air track. Why? ==> No, it has nothing to do with friction!
关 键 词: 重力势能; 空间依赖; 抛物势阱; 滑动轨道
课程来源: 视频讲座网
最后编审: 2020-06-01:吴雨秋(课程编辑志愿者)
阅读次数: 52