列表学习对排名算法的泛化分析Generalization Analysis of Listwise Learning-to-Rank Algorithms |
|
课程网址: | https://videolectures.net/videos/icml09_li_galltra |
主讲教师: | Hang Li |
开课单位: | 会议 |
开课时间: | 2009-08-26 |
课程语种: | 英语 |
中文简介: | 本文提出了一个排名的理论框架,并演示了如何使用该框架对列表排名算法进行泛化分析。近年来,已经提出了许多学习排名算法。其中,与其他方法相比,列表方法显示出更高的实证排名性能。然而,据我们所知,目前还没有关于列表式方法的理论研究。在本文中,我们提出了一个排名的理论框架,可以自然地描述各种列表式学习排名算法。利用该框架,我们证明了一个定理,该定理基于复合函数类的Rademacher平均值给出了列表排序算法的泛化界。复合函数以列表损失函数为外函数,以排序模型为内函数。然后,我们计算ListMLE、ListNet和RankCosine现有列表算法的Rademacher平均值。我们还讨论了在不同情况下,关于列表长度和变换函数的界限的紧密性。 |
课程简介: | This paper presents a theoretical framework for ranking, and demonstrates how to perform generalization analysis of listwise ranking algorithms using the framework. Many learning-to-rank algorithms have been proposed in recent years. Among them, the listwise approach has shown higher empirical ranking performance when compared to the other approaches. However, there is no theoretical study on the listwise approach as far as we know. In this paper, we propose a theoretical framework for ranking, which can naturally describe various listwise learning- to-rank algorithms. With this framework, we prove a theorem which gives a generalization bound of a listwise ranking algorithm, on the basis of Rademacher Average of the class of compound functions. The compound functions take listwise loss functions as outer functions and ranking models as inner functions. We then compute the Rademacher Averages for existing listwise algorithms of ListMLE, ListNet, and RankCosine. We also discuss the tightness of the bounds in different situations with regard to the list length and transformation function. |
关 键 词: | 列表学习; 排名算法; 泛化分析 |
课程来源: | 视频讲座网 |
数据采集: | 2025-04-25:liyq |
最后编审: | 2025-04-25:liyq |
阅读次数: | 7 |