基于近似推理的机器人轨迹优化Robot Trajectory Optimization Using Approximate Inference |
|
课程网址: | https://videolectures.net/videos/icml09_toussaint_rto |
主讲教师: | Marc Toussaint |
开课单位: | 会议 |
开课时间: | 2009-08-26 |
课程语种: | 英语 |
中文简介: | 机器人场景中的一般随机最优控制(SOC)问题往往太复杂,无法精确和近乎实时地解决。经典的近似解是首先计算最优(确定性)轨迹,然后求解局部线性二次高斯(LQG)扰动模型来处理系统的随机性。我们提出了一种新的算法,改进了iLQG等先前的算法。我们考虑一个概率模型,其中最大似然(ML)轨迹与最优轨迹重合,并且在LQG的情况下,它再现了经典的SOC解。然后,该算法利用近似推理方法(类似于期望传播),有效地推广到非LQG系统。我们在一个模拟的39自由度人形机器人上演示了该算法。 |
课程简介: | The general stochastic optimal control (SOC) problem in robotics scenarios is often too complex to be solved exactly and in near real time. A classical approximate solution is to first compute an optimal (deterministic) trajectory and then solve a local linear-quadratic-gaussian (LQG) perturbation model to handle the system stochasticity. We present a new algorithm for this approach which improves upon previous algorithms like iLQG. We consider a probabilistic model for which the maximum likelihood (ML) trajectory coincides with the optimal trajectory and which, in the LQG case, reproduces the classical SOC solution. The algorithm then utilizes approximate inference methods (similar to expectation propagation) that efficiently generalize to non-LQG systems. We demonstrate the algorithm on a simulated 39-DoF humanoid robot. |
关 键 词: | 近似推理; 机器人; 轨迹优化 |
课程来源: | 视频讲座网 |
数据采集: | 2025-04-25:liyq |
最后编审: | 2025-04-25:liyq |
阅读次数: | 5 |