0


使用卡尔曼滤波器对传感器数据进行数据清洗

Usage of the Kalman filter for data cleaning of sensor data
课程网址: https://videolectures.net/videos/sikdd2013_kenda_kalman_filter  
主讲教师: Klemen Kenda
开课单位: 信息不详。欢迎您在右侧留言补充。
开课时间: 2013-10-30
课程语种: 英语
中文简介:
本文提出了一种利用卡尔曼滤波对传感器数据进行数据清洗的方法。卡尔曼滤波是一种在线算法,因此对于传感器数据流的使用是理想的。卡尔曼滤波器学习用户指定的底层模型的参数,该模型对传感器正在测量的现象进行建模。提出了利用卡尔曼滤波来预测测量过程在不久的将来的期望值和检测数据流中的异常。此外,卡尔曼滤波预测可用于替换数据流中的缺失值或无效值。算法只需要传感器测量作为输入,这使得在n层架构中尽可能靠近资源层的位置是理想的。
课程简介: This paper presents a methodology for data cleaning of sensor data using the Kalman filter. The Kalman filter is an on-line algorithm and as such is ideal for usage on the sensor data streams. The Kalman filter learns parameters of a user-specified underlying model which models the phenomena the sensor is measuring. Usage of the Kalman filter is proposed to predict the expected values of the measuring process in the near future and to detect the anomalies in the data stream. Furthermore the Kalman filter prediction can be used to replace missing or invalid values in the data stream. Algorithm only requires sensor measurements as an input, which makes it ideal to be placed as near to the resource tier in the N-tier architecture as possible.
关 键 词: 数据清洗; 卡尔曼滤波; 传感器数据流
课程来源: 视频讲座网
数据采集: 2025-05-09:zsp
最后编审: 2025-05-09:zsp
阅读次数: 5