首页 → 人文社会科学
首页 → 综合
首页 → 综合
社交媒体事件的自动摘要Automatic Summarization of Events from Social Media |
|
课程网址: | https://videolectures.net/videos/icwsm2013_chong_social_media |
主讲教师: | Freddy Chong Tat Chua |
开课单位: | 信息不详。欢迎您在右侧留言补充。 |
开课时间: | 2014-04-03 |
课程语种: | 英语 |
中文简介: | 推特等社交媒体服务每天为大多数现实世界事件生成大量内容。挖掘噪声和冗余来理解内容的重要方面是一项非常具有挑战性的任务。我们提出了一种搜索和摘要框架,从按时间顺序排列的推文样本中提取相关的代表性推文,以生成连贯简洁的事件摘要。我们介绍了两种主题模型,它们利用数据中的时间相关性来提取相关推文进行摘要。摘要框架已经使用Twitter上四个真实世界事件的数据进行了评估。评估是使用维基百科上关于事件的文章以及使用亚马逊Mechanical Turk(MTurk)与人类读者(MTurkers)进行的。两个实验都表明,所提出的模型优于传统的LDA,并得出了翔实的总结。 |
课程简介: | Social media services such as Twitter generate phenomenal volume of content for most real-world events on a daily basis. Digging through the noise and redundancy to understand the important aspects of the content is a very challenging task. We propose a search and summarization framework to extract relevant representative tweets from a time-ordered sample of tweets to generate a coherent and concise summary of an event. We introduce two topic models that take advantage of temporal correlation in the data to extract relevant tweets for summarization. The summarization framework has been evaluated using Twitter data on four real-world events. Evaluations are performed using Wikipedia articles on the events as well as using Amazon Mechanical Turk (MTurk) with human readers (MTurkers). Both experiments show that the proposed models outperform traditional LDA and lead to informative summarie |
关 键 词: | 社交媒体服务; 摘要框架; 世界事件 |
课程来源: | videolectures |
数据采集: | 2025-05-27:yuhongrui |
最后编审: | 2025-10-17:liyy |
阅读次数: | 12 |