推断基因调控网络使用特征选择技术集成Inferring gene regulatory networks using ensembles of feature selection techniques |
|
课程网址: | http://videolectures.net/mlsb2012_ruyssinck_gene/ |
主讲教师: | Joeri Ruyssinck |
开课单位: | 根特大学 |
开课时间: | 2012-10-23 |
课程语种: | 英语 |
中文简介: | **动机:**计算系统生物学中长期存在的开放挑战之一是从表达数据推断基因调控网络。最近,已经建立了两个社区范围的努力来对网络推理技术(DREAM4和DREAM5)进行基准测试,其中显示使用从基于树的集合方法(GENIE3)获得的可变重要性得分的特征选择方法获得了最佳性能。尽管该算法取得了成功,但很少有研究能够理解为什么这种方法能够很好地工作,并且如果使用其他类型的特征选择技术可以获得同样好的或更好的结果。\\ **结果:**在此在工作中,我们对网络推理问题的特征选择方法进行了大规模分析。我们表明,使用最近的集合特征选择技术的概念,可以实现与GENIE3同样好或更好的结果,证明集合设置是特征选择技术在网络推理任务上实现良好性能的必要要求。此外,我们表明,通过组合几种集合特征选择技术,可以使性能更加稳健并略微改进。这种分析为在此设置中开发基于集合的新特征选择技术开辟了新的途径。\\ |
课程简介: | **Motivation:** One of the long-standing open challenges in computational systems biology is the inference of gene regulatory networks from expression data. Recently, two community-wide efforts have been established to benchmark network inference techniques (DREAM4 and DREAM5), where it was shown that a feature selection method us- ing variable importance scores obtained from tree-based ensemble methods (GENIE3) achieved top performance. Despite the success of this algorithm, little research has been carried out to understand why this approach works so well, and if equally good or better results could be obtained using other types of feature selection techniques.\\ **Results:** In this work, we present a large scale analysis of feature selection approaches to the network inference problem. We show that, using the recent concept of ensemble feature selection techniques, equally good or better results than GENIE3 can be achieved, demonstrating that the ensemble setting is a necessary requirement for feature selection techniques to achieve good performance on the network inference task. Furthermore, we show that by combining several ensemble feature selection techniques the performance can be made more robust and slightly improved. This analysis opens up new avenues for the development of novel types of ensemble based feature selection techniques in this setting.\\ |
关 键 词: | 生物学; 遗传学; 计算机科学; 生物信息学; 机器学习 |
课程来源: | 视频讲座网 |
最后编审: | 2021-12-27:liyy |
阅读次数: | 68 |