基于模型的强化学习Model-Based Reinforcement Learning |
|
课程网址: | http://videolectures.net/nips09_littman_mbrl/ |
主讲教师: | Michael Littman |
开课单位: | 新泽西州立大学 |
开课时间: | 2010-01-19 |
课程语种: | 英语 |
中文简介: | 在基于模型的强化学习中,代理人利用其经验构建其环境控制动态的表示。然后,它可以预测其行为的结果,并做出最大化其学习和任务绩效的决策。本教程将调查该领域的工作,重点是最近的结果。主题将包括:PAC-MDP形式主义的高效学习,贝叶斯强化学习,模型和线性函数近似,最近的计划进展。 |
课程简介: | In model-based reinforcement learning, an agent uses its experience to construct a representation of the control dynamics of its environment. It can then predict the outcome of its actions and make decisions that maximize its learning and task performance. This tutorial will survey work in this area with an emphasis on recent results. Topics will include: Efficient learning in the PAC-MDP formalism, Bayesian reinforcement learning, models and linear function approximation, recent advances in planning. |
关 键 词: | 基于模型的强化学习; 构建环境; 模型; 线性函数 |
课程来源: | 视频讲座网 |
最后编审: | 2020-05-22:王淑红(课程编辑志愿者) |
阅读次数: | 531 |