0


缩影驱动3 D扩散张量图像分割:对提取的具体结构

Epitome driven 3-D Diffusion Tensor image segmentation: on extracting specific structures
课程网址: http://videolectures.net/nips2010_motwani_edd/  
主讲教师: Kamiya Motwani
开课单位: 威斯康星大学
开课时间: 2011-03-25
课程语种: 英语
中文简介:
我们研究从扩散张量分割白质结构的具体利益的问题(DT-MR)图像的人的大脑。这是在许多影像学研究的一个重要要求:例如,为了评估是否具有脑结构组水平的差异,在一组图像功能的疾病。通常,互动专家引导的分割一直是这样的应用程序的方法的选择,但这是乏味的大型数据集的普遍的今天。为了解决这个问题,我们赋予一个图像分割算法的“建议”的编码区的一些全局特征(S)我们要提取。这是通过构建(使用专家分割)的一个特定区域的一个缩影超过一包的话(例如,直方图的合适的特征描述符)。现在,鉴于这样的表示,该问题降低脑图像分割的新的附加约束强制分割前景和预先指定的特征直方图之间的一致性。我们目前的组合的近似算法,将特定于域的约束马尔可夫随机场(MRF)图像分割。利用图像分割的最新结果,我们得到我们的问题的有效的解决策略。我们提供的解决方案的质量分析,并提出有前途的实验证据表明,神经科学中的许多结构可以可靠地从三维脑图像卷使用我们的算法提取。
课程简介: We study the problem of segmenting specific white matter structures of interest from Diffusion Tensor (DT-MR) images of the human brain. This is an important requirement in many Neuroimaging studies: for instance, to evaluate whether a brain structure exhibits group level differences as a function of disease in a set of images. Typically, interactive expert guided segmentation has been the method of choice for such applications, but this is tedious for large datasets common today. To address this problem, we endow an image segmentation algorithm with 'advice' encoding some global characteristics of the region(s) we want to extract. This is accomplished by constructing (using expert-segmented images) an epitome of a specific region - as a histogram over a bag of 'words' (e.g.,suitable feature descriptors). Now, given such a representation, the problem reduces to segmenting new brain image with additional constraints that enforce consistency between the segmented foreground and the pre-specified histogram over features. We present combinatorial approximation algorithms to incorporate such domain specific constraints for Markov Random Field (MRF) segmentation. Making use of recent results on image co-segmentation, we derive effective solution strategies for our problem. We provide an analysis of solution quality, and present promising experimental evidence showing that many structures of interest in Neuroscience can be extracted reliably from 3-D brain image volumes using our algorithm.
关 键 词: 图像分割; 影像; 马尔可夫随机场
课程来源: 视频讲座网
最后编审: 2021-01-31:nkq
阅读次数: 47