生成和条件图像模型Generative and Discriminative Image Models |
|
课程网址: | http://videolectures.net/nipsworkshops09_winn_gdim/ |
主讲教师: | John Winn |
开课单位: | 微软公司 |
开课时间: | 2010-03-26 |
课程语种: | 英语 |
中文简介: | 由于自然图像的可变性很大,因此为图像创建良好的概率模型是一项具有挑战性的任务。对于一般照片,理想的生成模型必须应对场景布局,遮挡,物体外观的变化,物体位置的变化和3D旋转以及阴影和阴影等照明效果。创建这样一个模型的巨大挑战已经导致许多研究人员开始采用判别模型,而这些模型使用的图像特征在许多这些变异源中基本不变。在本次演讲中,我将对两种方法进行比较,并描述每种方法的优点和缺点,并提出可以将两者的最佳方面结合起来的一些方向。 |
课程简介: | Creating a good probabilistic model for images is a challenging task, due to the large variability in natural images. For general photographs, an ideal generative model would have to cope with scene layout, occlusion, variability in object appearance, variability in object position and 3D rotation and illumination effects like shading and shadows. The formidable challenges in creating such a model have led many researchers to pursue discriminative models, which instead use image features that are largely invariant to many of these sources of variability. In this talk, I will compare both approaches and describe some strengths and weaknesses of each and suggest some directions in which the best aspects of both can be combined. |
关 键 词: | 概率模型; 自然图像; 生成模型 |
课程来源: | 视频讲座网 |
最后编审: | 2021-08-28:zyk |
阅读次数: | 76 |