首页数学
0


回顾性的变化点的方法和时序建模

Retrospective Change-point Approaches and Sequential Modelling
课程网址: http://videolectures.net/nipsworkshops09_xing_rcpasm/  
主讲教师: Haipeng Xing
开课单位: 纽约州立大学
开课时间: 2011-01-19
课程语种: 英语
中文简介:
我们建议分析阵列CGH数据,新的随机分割模型和相关的估计程序,具有吸引人的统计和计算属性。该贝叶斯分割模型的一个重要优点是它产生后验均值的显式公式,可用于直接估计信号而不执行分割。也可以使用我们的方法估计与后验分布相关的其他与提供任何给定分割的置信度评估有关的量。我们提出了一种近似方法,其计算时间在序列长度上是线性的,这使得我们的方法实际上适用于新的高密度阵列。仿真研究和对真实阵列CGH数据的应用说明了所提出方法的优点。
课程简介: We propose for the analysis of array-CGH data, a new stochastic segmentation model and an associated estimation procedure that has attractive statistical and computational properties. An important bene fit of this Bayesian segmentation model is that it yields explicit formulas for posterior means, which can be used to estimate the signal directly without performing segmentation. Other quantities relating to the posterior distribution that are useful for providing confi dence assessments of any given segmentation can also be estimated by using our method. We propose an approximation method whose computation time is linear in sequence length which makes our method practically applicable to the new higher density arrays. Simulation studies and applications to real array-CGH data illustrate the advantages of the proposed approach.
关 键 词: CGH数据分析; 随机分割模型; 贝叶斯分割模型; 时序建模
课程来源: 视频讲座网
最后编审: 2020-07-14:yumf
阅读次数: 41