0


支持限制的机器

Support Constraints Machines
课程网址: http://videolectures.net/simbad2011_gori_constraints/  
主讲教师: Marco Gori
开课单位: 锡耶纳大学
开课时间: 2011-10-17
课程语种: 英语
中文简介:
内核机器理论在不同领域产生了巨大的影响,包括模式识别和计算机视觉。然而,它提供了大多数有趣问题的原始模型,特别是当智能的出现源于监督的例子和知识粒子的联合存在时。在这个讲话中,我讨论了基于抽象概念约束的理论的深入重构。我给出了“代理人身体”的照片。在表示定理方面,通过扩展内核机器的经典框架,以这种方式结合逻辑形式,如一阶逻辑。这可以通过在同一功能框架中统一连续和离散计算机制来实现,因此任何刺激(如监督示例和逻辑谓词)都被转换为约束。基于约束变分微积分的学习或者通过约束的简约匹配或者通过用熵的最小化表达的无监督机制来指导。我展示了一些不同类型的符号和次符号约束的实验,然后我对计算机视觉中提出的框架的采用给出了见解。结果表明,在大多数有趣的任务中,从约束中学习自然会导致“深层架构”,这是在每个阶段遵循将注意力集中在“简单约束”的发展原则时出现的。有趣的是,这表明,如发展心理学中所讨论的,基于阶段的学习可能不是生物学的主要结果,但它可能是优化原则和复杂性问题的结果,而不管“身体”如何。
课程简介: The theory of kernel machines has had an enormous impact in different in different fields, including pattern recognition and computer vision. However, it offers quite primitive models of most interesting problems, especially when the emergence of intelligence arises from the joint presence of supervised examples and knowledge granules. I this talk, I discuss an in-depth reformulation of the theory that is based on the abstract notion of constraint. I give a picture of the “agent body” in terms of representation theorems by extending the classic framework of kernel machines in such a way to incorporate logic formalisms, like first-order logic. This is made possible by the unification of continuous and discrete computational mechanisms in the same functional framework, so as any stimulus, like supervised examples and logic predicates, is translated into a constraint. The learning, which is based on constrained variational calculus, is either guided by a parsimonious match of the constraints or by unsupervised mechanisms expressed in terms of the minimization of the entropy. I show some experiments with different kinds of symbolic and sub-symbolic constraints, and then I give insights on the adoption of the proposed framework in computer vision. It is shown that in most interesting tasks the learning from constraints naturally leads to “deep architectures”, that emerge when following the developmental principle of focusing attention on "easy constraints", at each stage. Interestingly, this suggests that stage-based learning, as discussed in developmental psychology, might not be primarily the outcome of biology, but it could be instead the consequence of optimization principles and complexity issues that hold regardless of the "body".
关 键 词: 模式识别; 计算机科学; 计算机视觉
课程来源: 视频讲座网
最后编审: 2020-06-18:dingaq
阅读次数: 40