GroupWise的稀疏强制执行估计为解决EEG/ MEG逆问题Groupwise sparsity enforcing estimators for solving the EEG/MEG inverse problem |
|
课程网址: | http://videolectures.net/sip08_haufe_gsee/ |
主讲教师: | Stefan Haufe |
开课单位: | 柏林工业大学 |
开课时间: | 2008-12-18 |
课程语种: | 英语 |
中文简介: | 脑电流与大脑中的信息传递直接相关,因此是研究认知加工机制的极好方法。电脑和脑磁图,脑电图和脑电图,是这些电流(EEG)或其相应磁场(MEG)的非侵入性测量。从EEG / MEG测量重建脑电流密度是一个不适定的逆问题。由于从电流源到外部传感器的前向映射是线性的,因此反问题可以表示为高度确定的线性方程组,其没有唯一解。处理这种模糊性的常用策略是正规化,即通过对来源进行额外惩罚来处理数据。基于神经生理学推动的平滑性和稀疏性假设,已经提出了基于l2范数和l1范数的惩罚。 |
课程简介: | Cerebral current flows are directly related to information transfer in the brain and thus an excellent means for studying the mechanisms of cogni- tive processing. Electro- and Magneto-encephalography, EEG and MEG, are noninvasive measures of these electric currents (EEG) or their respec- tive accompanying magnetic fields (MEG). The reconstruction of the cere- bral current density from EEG/MEG measurements is an ill-posed inverse problem. As the forward mapping from the current sources to the external sensors is linear, the inverse problem may be formulated as a highly un- der determined linear system of equations, which has no unique solution. The common strategy to deal with this ambiguity is regularization, i.e. fit- ting the data with an additional penalization of the sources. Both l2-norm and l1-norm based penalties have been proposed based on the neurophys- iologically motivated assumptions of smoothness and sparsity, respectively. |
关 键 词: | 医药; 神经科学; EEG / MEG逆问题 |
课程来源: | 视频讲座网 |
最后编审: | 2021-01-31:nkq |
阅读次数: | 43 |