0


差分进化算法和粒子群优化算法的聚类算法

Differential Evolution and Particle Swarm Optimization in Partitional Clustering
课程网址: http://videolectures.net/solomon_krink_depso/  
主讲教师: Thiemo Krink
开课单位: 奥胡斯大学
开课时间: 2007-01-25
课程语种: 英语
中文简介:
近年来,已经提出了许多基于遗传算法(GA)的分区聚类算法来解决找到数据集的最佳分区的问题。令人惊讶的是,很少有研究考虑除GA或模拟退火之外的替代随机搜索启发式算法。在启发式搜索领域之外几乎不为人所知的两种有前途的数值优化算法是粒子群优化(PSO)和差分进化(DE)。在这项研究中,我们比较了GA与PSO和DE的性能,用于聚类的medoid进化方法。此外,我们将这些结果与名义分类,k均值和随机搜索(RS)作为下限进行了比较。我们的结果表明,与GAs和PSO相比,DE在硬度聚类问题方面明显且始终如一,在结果的精度和稳健性(再现性)方面都是如此。只有微不足道的问题,所有算法都可以获得可比较的结果。除了卓越的性能之外,DE非常容易实现,与GA和PSO的实质调整相比,几乎不需要任何参数调整。我们的研究表明,DE而不是GA应该在分区聚类算法中受到主要关注。
课程简介: In recent years, many partitional clustering algorithms based on genetic algorithms (GA) have been proposed to tackle the problem of finding the optimal partition of a data set. Surprisingly, very few studies considered alternative stochastic search heuristics other than GAs or simulated annealing. Two promising algorithms for numerical optimization, which are hardly known outside the heuristic search field, are particle swarm optimisation (PSO) and differential evolution (DE). In this study, we compared the performance of GAs with PSO and DE for a medoid evolution approach to clustering. Moreover, we compared these results with the nominal classification, k-means and random search (RS) as a lower bound. Our results show that DE is clearly and consistently superior compared to GAs and PSO for hard clustering problems, both in respect to precision as well as robustness (reproducibility) of the results. Only for trivial problems all algorithms can obtain comparable results. Apart from superior performance, DE is very easy to implement and requires hardly any parameter tuning compared to substantial tuning for GAs and PSOs. Our study shows that DE rather than GAs should receive primary attention in partitional cluster algorithms.
关 键 词: 聚类算法; 遗传算法; 粒子群优化; 差分进化
课程来源: 视频讲座网
最后编审: 2020-06-29:wuyq
阅读次数: 61