首页数学
0


分区的线性规划逼近问题

Partitioned Linear Programming Approximations for MDPs
课程网址: http://videolectures.net/uai08_kveton_plpa/  
主讲教师: Branislav Kveton
开课单位: Adobe公司
开课时间: 2008-07-30
课程语种: 英语
中文简介:
近似线性规划(ALP)是解决大型分解马尔可夫决策过程(MDP)的有效方法。该方法的主要思想是通过一组基函数逼近最优值函数,并通过线性规划(LP)优化它们的权重。本文提出了一种新的ALP近似。与标准ALP公式相比,我们将约束空间分解为一组低维空间。该结构允许有效地解决新LP。特别地,LP的约束可以以紧凑的形式得到满足,而不会对ALP约束的树宽度具有指数依赖性。我们研究了所提方法的实践和理论方面。此外,我们展示了其在超过2100个州的MDP上的扩大规模。
课程简介: Approximate linear programming (ALP) is an efficient approach to solving large factored Markov decision processes (MDPs). The main idea of the method is to approximate the optimal value function by a set of basis functions and optimize their weights by linear programming (LP). This paper proposes a new ALP approximation. Comparing to the standard ALP formulation, we decompose the constraint space into a set of low-dimensional spaces. This structure allows for solving the new LP efficiently. In particular, the constraints of the LP can be satisfied in a compact form without an exponential dependence on the tree width of ALP constraints. We study both practical and theoretical aspects of the proposed approach. Moreover, we demonstrate its scale-up potential on an MDP with more than 2100 states.
关 键 词: 近似​​线性规划; 大保理马尔可夫决策; 低维空间
课程来源: 视频讲座网
最后编审: 2020-06-19:cxin
阅读次数: 48