学习贝叶斯网络结构:Dirichlet先验与数据Learning the Bayesian Network Structure: Dirichlet Prior versus Data |
|
课程网址: | http://videolectures.net/uai08_steck_lbns/ |
主讲教师: | Harald Steck |
开课单位: | 阿尔卡特-朗讯公司 |
开课时间: | 2008-07-30 |
课程语种: | 英语 |
中文简介: | 在图形模型的结构学习的贝叶斯方法中,最近显示Dirichlet优先于模型参数的等效样本大小(ESS)对贝叶斯网络结构的最大后验估计具有重要影响。在我们的第一个贡献中,我们在理论上分析了大ESS值的情况,这补充了以前的工作:在其他结果中,我们发现贝叶斯网络中边缘的存在优于其缺失,即使Dirichlet先验和数据意味着独立性,只要条件经验分布明显不同于统一。在我们的第二个贡献中,我们专注于现实的ESS值,并提供对“最佳”的分析近似。预测意义上的ESS值(其准确性也通过实验验证):这种近似提供了对数据的哪些属性具有决定‘最优’的主要影响的理解。 ESS-值。 |
课程简介: | In the Bayesian approach to structure learning of graphical models, the equivalent sample size (ESS) in the Dirichlet prior over the model parameters was recently shown to have an important effect on the maximum-a-posteriori estimate of the Bayesian network structure. In our first contribution, we theoretically analyze the case of large ESS-values, which complements previous work: among other results, we find that the presence of an edge in a Bayesian network is favored over its absence even if both the Dirichlet prior and the data imply independence, as long as the conditional empirical distribution is notably different from uniform. In our second contribution, we focus on realistic ESS-values, and provide an analytical approximation to the ‘optimal’ ESS-value in a predictive sense (its accuracy is also validated experimentally): this approximation provides an understanding as to which properties of the data have the main effect determining the ‘optimal’ ESS-value. |
关 键 词: | 贝叶斯方法; 贝叶斯网络; 狄利克雷 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-15:wuyq |
阅读次数: | 100 |