预测的距离 学生成绩分类方法的比较Comparing classification methods for predicting distancestudents' performance |
|
课程网址: | http://videolectures.net/wapa2011_garcia_saiz_performance/ |
主讲教师: | Diego Garcia-Saiz |
开课单位: | 坎塔布里亚大学 |
开课时间: | 2011-11-11 |
课程语种: | 英语 |
中文简介: | 虚拟教学不断发展,教师必须有必要预测学生的表现。响应于这种必要性,可以使用不同的机器学习技术。尽管有许多基准比较它们的性能和准确性,但仍然很少有关于教育数据集的实验,这些实验具有非常特殊的特征,使它们与其他数据集不同。因此,在这项工作中,我们比较了应用于教育数据集的不同分类技术的输出的性能和解释水平,并提出了一种元算法来预处理数据集并提高模型的准确性,虚拟教师将使用该算法。他们通过ElWM工具做出决定。 |
课程简介: | Virtual teaching is constantly growing and, with it, the necessity of instructors to predict the performance of their students. In response to this necessity, different machine learning techniques can be used. Although there are so many benchmarks comparing their performance and accuracy, there are still very few experiments carried out on educational datasets which have very special features which make them different from other datasets. Therefore, in this work we compare the performance and interpretation level of the output of the different classification techniques applied on educational datasets and propose a meta-algorithm to preprocess the datasets and improve the accuracy of the model, which will be used by virtual instructors for their decision making through the ElWM tool. |
关 键 词: | 虚拟教学; 实验数据集; 元算法 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-18:dingaq |
阅读次数: | 76 |