首页传播学
0


在Web 2社交媒体的潜在空间语义

GeoFolk: Latent Spatial Semantics in Web 2.0 Social Media
课程网址: http://videolectures.net/wsdm2010_sizov_gflss/  
主讲教师: Sergej Sizov
开课单位: 科布伦茨-兰道大学
开课时间: 2010-04-12
课程语种: 英语
中文简介:
我们通过将文本特征(例如,标签作为短的非结构化文本标签的突出示例)与空间知识(例如地理标记和图像和视频的坐标)组合来描述用于社交媒体的多模态表征的方法。我们基于模型的框架GeoFolk结合了这两个方面,以构建更好的内容管理,检索和共享算法。该方法基于多模态贝叶斯模型,允许我们以良好的概率方式整合社交媒体的空间语义。我们在标签推荐,内容分类和聚类的特征场景中系统地评估Flickr数据子集的解决方案。实验结果表明,我们的方法优于仅基于其中一个方面的基线技术。此贡献中描述的方法也可用于其他域,例如Geoweb检索。
课程简介: We describe an approach for multi-modal characterization of social media by combining text features (e.g. tags as a prominent example of short, unstructured text labels) with spatial knowledge (e.g. geotags and coordinates of images and videos). Our model-based framework GeoFolk combines these two aspects in order to construct better algorithms for content management, retrieval, and sharing. The approach is based on multi-modal Bayesian models which allow us to integrate spatial semantics of social media in a well-formed, probabilistic manner. We systematically evaluate the solution on a subset of Flickr data, in characteristic scenarios of tag recommendation, content classification, and clustering. Experimental results show that our method outperforms baseline techniques that are based on one of the aspects alone. The approach described in this contribution can also be used in other domains such as Geoweb retrieval.
关 键 词: 文本特征; 空间语义; 贡献
课程来源: 视频讲座网
最后编审: 2020-09-27:yumf
阅读次数: 92