稀疏核Sarsa(λ)一个合格的痕迹Sparse Kernel-SARSA(λ) with an Eligibility Trace |
|
课程网址: | http://videolectures.net/ecmlpkdd2011_robards_eligibility/ |
主讲教师: | Matthew Robards |
开课单位: | 澳大利亚国立大学 |
开课时间: | 2011-11-30 |
课程语种: | 英语 |
中文简介: | 我们介绍了第一个在线核心版本的SARSA(λ),以允许任意和lambda的稀疏化;为0≤ &拉姆达;和乐; 1;这可以通过与核化值函数分开维护的合格性跟踪的新颖内核化来实现。当使用对内存效率和容量控制至关重要的稀疏内核投影技术时,这种分离对于保留资格跟踪的功能结构至关重要。结果是一个简单实用的Kernel-SARSA(λ)算法,适用于一般0≤ &拉姆达;和乐;与包括在Willow Garage PR2机器人上运行的真实机器人任务在内的一系列域上的标准SARSA(λ)(使用各种基函数)相比,1具有记忆效率。 |
课程简介: | We introduce the first online kernelized version of SARSA(λ) to permit sparsification for arbitrary λ for 0 ≤ λ ≤ 1; this is possible via a novel kernelization of the eligibility trace that is maintained separately from the kernelized value function. This separation is crucial for preserving the functional structure of the eligibility trace when using sparse kernel projection techniques that are essential for memory efficiency and capacity control. The result is a simple and practical Kernel-SARSA(λ) algorithm for general 0 ≤ λ ≤ 1 that is memory-efficient in comparison to standard SARSA(λ) (using various basis functions) on a range of domains including a real robotics task running on a Willow Garage PR2 robot. |
关 键 词: | 稀疏核投影技术; 存储效率; 容量控制; 机器人 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-06:魏雪琼(课程编辑志愿者) |
阅读次数: | 497 |