限制深度信念网络的多视图学习Restricted Deep Belief Networks for Multi-View Learning |
|
课程网址: | http://videolectures.net/ecmlpkdd2011_kang_restricted/ |
主讲教师: | Yoonseop Kang |
开课单位: | 浦项科技大学 |
开课时间: | 2011-10-03 |
课程语种: | 英语 |
中文简介: | 深度置信网络(DBN)是一种概率生成模型,具有多层隐藏节点和一层可见节点,其中层之间的参数化遵循协调或受限制的玻尔兹曼机器(RBM)。在本文中,我们提出了用于多视图学习的受限深度置信网络(RDBN),其中每层隐藏节点由视图特定和共享隐藏节点组成,以便从多个数据视图中学习个体和共享隐藏空间。视图特定的隐藏节点连接到涉及特定视图的较低层或可见节点中的相应视图特定隐藏节点,而共享隐藏节点遵循层间连接而没有标准DBN中的限制。使用分层对比分歧学习训练RDBN。合成和真实世界数据集的数值实验证明了RDBN的有用行为,与多翼协调(MWH)相比,它是一个双层无向模型。 |
课程简介: | Deep belief network (DBN) is a probabilistic generative model with multiple layers of hidden nodes and a layer of visible nodes, where parameterizations between layers obey harmonium or restricted Boltzmann machines (RBMs). In this paper we present restricted deep belief network (RDBN) for multi-view learning, where each layer of hidden nodes is composed of view-specific and shared hidden nodes, in order to learn individual and shared hidden spaces from multiple views of data. View-specific hidden nodes are connected to corresponding view-specific hidden nodes in the lower-layer or visible nodes involving a specific view, whereas shared hidden nodes follow inter-layer connections without restrictions as in standard DBNs. RDBN is trained using layer-wise contrastive divergence learning. Numerical experiments on synthetic and real-world datasets demonstrate the useful behavior of the RDBN, compared to the multi-wing harmonium (MWH) which is a two-layer undirected model. |
关 键 词: | 深信念网络; 玻尔兹曼机; 节点; 参数化 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-29:yumf |
阅读次数: | 109 |