关系学习与一个网络:一个渐进分析Relational Learning with One Network: An Asymptotic Analysis |
|
课程网址: | http://videolectures.net/aistats2011_xiang_network/ |
主讲教师: | Rongjing Xiang |
开课单位: | 普渡大学 |
开课时间: | 2011-05-06 |
课程语种: | 英语 |
中文简介: | 结构化学习方法的理论分析主要集中在数据由 {\em 独立} (尽管是结构化) 示例组成的领域。尽管统计关系学习 (srl) 社区最近开发了许多图形和网络域的分类方法, 但这项工作的大部分工作都集中在建模领域上, 其中有一个 {\em 单一} 网络可供学习。例如, 我们可以学习一种模型, 根据用户之间的友谊关系, 预测在线社交网络中用户的政治观点。在本例中, 数据将来自单个大型网络 (如 facebook), 增加数据大小将对应于获取较大的图形。尽管 srl 方法可以成功地改进这些类型域的分类, 但在解决单一网络域问题方面几乎没有什么理论分析。特别是, 估计的渐近特性并不清楚模型的大小是否随着网络的大小而增长。在这项工作中, 我们重点概述了从单个网络学习的条件, 在这些条件下, 从一个网络中学习将是渐近一致和正常的。此外, 我们还比较了最大似然估计 (mle) 的性质与广义最大伪伪估计 (mple) 的性质, 并利用由此得到的理解, 提出了新的单网络域的 mple 估计方法。我们包括对合成和真实网络数据的实证分析来说明研究结果。 |
课程简介: | Theoretical analysis of structured learning methods has focused primarily on domains where the data consist of {\em independent} (albeit structured) examples. Although the statistical relational learning (SRL) community has recently developed many classification methods for graph and network domains, much of this work has focused on modeling domains where there is a {\em single} network for learning. For example, we could learn a model to predict the political views of users in an online social network, based on the friendship relationships among users. In this example, the data would be drawn from a single large network (e.g., Facebook) and increasing the data size would correspond to acquiring a larger graph. Although SRL methods can successfully improve classification in these types of domains, there has been little theoretical analysis of addressing the issue of single network domains. In particular, the asymptotic properties of estimation are not clear if the size of the model grows with the size of the network. In this work, we focus on outlining the conditions under which learning from a single network will be asymptotically consistent and normal. Moreover, we compare the properties of maximum likelihood estimation (MLE) with that of generalized maximum pseudolikelihood estimation (MPLE) and use the resulting understanding to propose novel MPLE estimators for single network domains. We include empirical analysis on both synthetic and real network data to illustrate the findings. |
关 键 词: | 计算机科学; 网络分析; 机器学习 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-03:毛岱琦(课程编辑志愿者) |
阅读次数: | 33 |