0


半监督检测新奇自适应Eigenbasis,以及无线电瞬变应用

Semi-Supervised Novelty Detection with Adaptive Eigenbases, and Application to Radio Transients
课程网址: http://videolectures.net/cidu2011_wagstaff_eigenbases/  
主讲教师: Kiri L. Wagstaff
开课单位: 加州理工学院
开课时间: 2012-06-27
课程语种: 英语
中文简介:
我们提出了一种半监督的在线方法的新颖性检测, 并评估其性能的射电天文学时间序列数据。我们的方法使用自适应特征基将 1) 关于无趣信号的先验知识与 2) 对当前数据属性的在线估计结合起来, 从而能够对新信号进行高度敏感和精确的检测。将该方法应用于快速瞬态无线电异常的检测, 并与现有的替代算法进行了比较。根据帕克斯多波束测量的观测结果进行的试验显示, 对有趣的罕见事件进行检测, 并对已知的误报异常进行鲁棒性。
课程简介: We present a semi-supervised online method for novelty detection and evaluate its performance for radio astronomy time series data. Our approach uses adaptive eigenbases to combine 1) prior knowledge about uninteresting signals with 2) online estimation of the current data properties to enable highly sensitive and precise detection of novel signals. We apply the method to the problem of detecting fast transient radio anomalies and compare it to current alternative algorithms. Tests based on observations from the Parkes Multibeam Survey show both e ective detection of interesting rare events and robustness to known false alarm anomalies.
关 键 词: 计算机科学; 机器学习; 半监督学习
课程来源: 视频讲座网
最后编审: 2020-06-13:zyk
阅读次数: 78