计算机视觉的鲁棒分类器设计On the design of robust classifiers for computer vision |
|
课程网址: | http://videolectures.net/cvpr2010_masnadi_shirazi_drc/ |
主讲教师: | Hamed Masnadi-Shirazi |
开课单位: | 圣地亚哥加州大学 |
开课时间: | 2010-07-19 |
课程语种: | 英语 |
中文简介: | 研究了鲁棒分类器的设计, 它可以与计算机视觉典型的噪声和异常值的拥塞数据集进行对抗。有人认为, 这种稳健性需要损失函数, 既惩罚巨大的正利润率, 也惩罚负边。采用分类器设计的概率启发式视图, 确定了设计分类器损失的一套必要条件。这些条件用于推导出一种新的鲁棒贝氏率一致性损失, 表示切线损耗, 以及一个相关的提升算法, 表示 tangentboost。通过对场景分类、目标跟踪和多实例学习等计算机视觉问题数据的实验表明, tangentboost 的性能一直优于以往的提升算法。 |
课程简介: | The design of robust classifiers, which can contend with the noisy and outlier ridden datasets typical of computer vision, is studied. It is argued that such robustness requires loss functions that penalize both large positive and negative margins. The probability elicitation view of classifier design is adopted, and a set of necessary conditions for the design of such losses is identified. These conditions are used to derive a novel robust Bayes-consistent loss, denoted Tangent loss, and an associated boosting algorithm, denoted TangentBoost. Experiments with data from the computer vision problems of scene classification, object tracking, and multiple instance learning show that TangentBoost consistently outperforms previous boosting algorithms. |
关 键 词: | 计算机科学; 计算机视觉; 稀疏和凸优化 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-03:张荧(课程编辑志愿者) |
阅读次数: | 50 |