0


在线分裂聚类的半模糊的方法

A Semi-fuzzy approach for online divisive-agglomerative clustering
课程网址: http://videolectures.net/ecml07_pereiro_sfa/  
主讲教师: Pedro Pereira Rodrigues
开课单位: 波尔图大学
开课时间: 2008-01-29
课程语种: 英语
中文简介:
在线划分-聚类分析 (odac) 是一种增量方法, 用于使用分层过程对流式程序进行时间序列的随时间变化进行分组。它使用基于流之间相关性的自上而下的策略, 构建类似树的流集群层次结构。该系统还具有聚集阶段, 以增强能够进行结构变化检测的动态行为。然而, 算法中使用的分割决策侧重于两组之间的清晰边界, 这意味着风险很高, 因为它必须只根据整个数据的一小部分来决定。在本文中, 我们提出了一种将变量分配给新创建的集群的半模糊方法, 以便在有效性和性能之间进行更好的权衡。实验工作支持我们的方法的好处。
课程简介: The Online Divisive-Agglomerative Clustering (ODAC) is an incremental approach for clustering streaming time series using a hierarchical procedure over time. It constructs a tree-like hierarchy of clusters of streams, using a top-down strategy based on the correlation between streams. The system also possesses an agglomerative phase to enhance a dynamic behavior capable of structural change detection. However, the split decision used in the algorithm focus on the crisp boundary between two groups, which implies a high risk since it has to decide based on only a small subset of the entire data. In this work we propose a semi-fuzzy approach to the assignment of variables to newly created clusters, for a better trade-off between validity and performance. Experimental work supports the benefits of our approach.
关 键 词: 计算机科学; 机器学习; 聚类
课程来源: 视频讲座网
最后编审: 2020-06-03:张荧(课程编辑志愿者)
阅读次数: 40