数据分类:稀疏性的连续方法Datum-Wise Classification: A Sequential Approach to Sparsity |
|
课程网址: | http://videolectures.net/ecmlpkdd2011_denoyer_sparsity/ |
主讲教师: | Ludovic Denoyer |
开课单位: | 皮埃尔和玛丽·居里大学 |
开课时间: | 2011-11-30 |
课程语种: | 英语 |
中文简介: | 我们提出了一种新的分类技术, 其目的是为每个数据点选择适当的表示形式, 这与通常选择包含整个数据集的表示的方法不同。利用稀疏诱导经验风险的方法发现了这种数据上的表示方法, 这是对标准 l0 正则化风险的放宽。分类问题被建模为一个顺序决策过程, 按顺序为每个数据点选择分类前要使用的特征。数据-智慧分类自然地扩展到多类任务, 我们描述了一个特定的情况, 在这种情况下, 我们的推理与传统的线性分类器具有同等的复杂性, 同时仍然使用可变数量的特征。我们在一组常见的二进制和多类数据集上将分类器与经典的 l1 正则化线性模型 (l1-svm 和 lars) 进行了比较, 并表明对于使用的相同平均数量的要素, 我们可以使用我们的方法获得更好的性能。 |
课程简介: | We propose a novel classification technique whose aim is to select an appropriate representation for each datapoint, in contrast to the usual approach of selecting a representation encompassing the whole dataset. This datum-wise representation is found by using a sparsity inducing empirical risk, which is a relaxation of the standard L0 regularized risk. The classification problem is modeled as a sequential decision process that sequentially chooses, for each datapoint, which features to use before classifying. Datum-Wise Classification extends naturally to multi-class tasks, and we describe a specific case where our inference has equivalent complexity to a traditional linear classifier, while still using a variable number of features. We compare our classifier to classical L1 regularized linear models (L1-SVM and LARS) on a set of common binary and multi-class datasets and show that for an equal average number of features used we can get improved performance using our method. |
关 键 词: | 监督学习; 稀疏的顺序的方法; 主要途径稀疏 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-24:yumf |
阅读次数: | 34 |