没有定位的地图构建降维技术Map Building without Localization by Dimensionality Reduction Techniques |
|
课程网址: | http://videolectures.net/icml07_yairi_bwlc/ |
主讲教师: | Takehisa Yairi |
开课单位: | 东京大学 |
开课时间: | 2007-06-23 |
课程语种: | 英语 |
中文简介: | 提出了一种新的移动机器人地图构建框架--基于降维的无定位映射 (lfmdr)。在这个框架下, 机器人地图的构建被解释为重建物体的二维坐标的问题, 以便它们在机器人观测历史空间中最大限度地保持物体的局部接近度。不仅传统的线性 pca, 而且最近的流形学习技术也可以用来解决这个问题。与 slam 框架不同的是, lfmdr 框架不需要本地化过程, 也不需要显式测量和运动模型。在本文的后半部分, 我们将演示 "仅可见性" 和 "仅轴承" 无定位映射, 这些映射分别通过将 lfmdr 框架应用于可见性和轴承测量。 |
课程简介: | This paper proposes a new map building framework for mobile robot named Localization-Free Mapping by Dimensionality Reduction (LFMDR). In this framework, the robot map building is interpreted as a problem of reconstructing the 2-D coordinates of ob jects so that they maximally preserve the local proximity of the ob jects in the space of robot's observation history. Not only traditional linear PCA but also recent manifold learning techniques can be used for solving this problem. In contrast to the SLAM framework, LFMDR framework does not require localization procedures nor explicit measurement and motion models. In the latter part of this paper, we will demonstrate "visibility-only" and "bearing-only" localization-free mappings which are derived by applying LFMDR framework to the visibility and bearing measurements respectively. |
关 键 词: | 机器学习; 预处理; 机器人构建地图; 降维映射 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-24:yumf |
阅读次数: | 63 |