0


非负矩阵分解通过秩一停机日期

Nonnegative Matrix Factorization via Rank-One Downdate
课程网址: http://videolectures.net/icml08_ghodsi_nmf/  
主讲教师: Ali Ghodsi
开课单位: 滑铁卢大学
开课时间: 2008-07-29
课程语种: 英语
中文简介:
1999年, 李和承为推广非负矩阵分解 (nmf) 作为数据挖掘的工具。nmf 尝试通过两个低阶矩阵 (也包含非负项) 的乘积来近似具有非负项的矩阵。我们提出了一种算法, 称为一级停机 (r1d) 来计算部分由奇异值分解驱动的 nmf。该算法计算自适应确定矩阵的主要奇异值和向量。在每次迭代中, r1d 都会根据目标函数从数据集中提取一个等级一子矩阵。我们建立了一个理论结果, 即最大化此目标函数对应于在一个几乎可分离的语料库中正确分类文章。我们还提供了计算实验, 证明了这种方法在识别现实数据集中的特征方面的成功。该方法比 lsi 或其他 nmf 例程快得多。
课程简介: Nonnegative matrix factorization (NMF) was popularized as a tool for data mining by Lee and Seung in 1999. NMF attempts to approximate a matrix with nonnegative entries by a product of two low-rank matrices, also with nonnegative entries. We propose an algorithm called rank-one downdate (R1D) for computing a NMF that is partly motivated by singular value decomposition. This algorithm computes the dominant singular values and vectors of adaptively determined submatrices of a matrix. On each iteration, R1D extracts a rank-one submatrix from the dataset according to an objective function. We establish a theoretical result that maximizing this objective function corresponds to correctly classifying articles in a nearly separable corpus. We also provide computational experiments showing the success of this method in identifying features in realistic datasets. The method is much faster than either LSI or other NMF routines.
关 键 词: 非负矩阵分解; 语料库; 修正幂迭代
课程来源: 视频讲座网
最后编审: 2020-06-04:毛岱琦(课程编辑志愿者)
阅读次数: 58