最大似然规则集合Maximum Likelihood Rule Ensembles |
|
课程网址: | http://videolectures.net/icml08_kotlowski_mlr/ |
主讲教师: | Wojciech Kotlowski |
开课单位: | 波兹南理工大学 |
开课时间: | 2008-08-06 |
课程语种: | 英语 |
中文简介: | 提出了一种新的规则归纳算法, 通过概率估计来解决分类问题。决策规则的主要优点是简单且易于解释。虽然早期的规则归纳方法是基于顺序覆盖的, 但我们采用的方法是将单个决策规则作为集成中的基本分类器。该组合是通过贪婪地最小化导致估计类条件概率分布的负对数似然来建立的。将介绍的方法与 slipper、lri 和 RuleFit 等其他决策规则归纳算法进行了比较。 |
课程简介: | We propose a new rule induction algorithm for solving classification problems via probability estimation. The main advantage of decision rules is their simplicity and good interpretability. While the early approaches to rule induction were based on sequential covering, we follow an approach in which a single decision rule is treated as a base classifier in an ensemble. The ensemble is built by greedily minimizing the negative loglikelihood which results in estimating the class conditional probability distribution. The introduced approach is compared with other decision rule induction algorithms such as SLIPPER, LRI and RuleFit. |
关 键 词: | 梯度与牛顿法; 梯度法; 决策规则 |
课程来源: | 视频讲座网公开课 |
最后编审: | 2020-05-21:王淑红(课程编辑志愿者) |
阅读次数: | 402 |