扩展MDL去噪Extensions to MDL denoising |
|
课程网址: | http://videolectures.net/icml08_ojanen_emd/ |
主讲教师: | Janne Ojanen |
开课单位: | 阿尔托大学 |
开课时间: | 2008-08-12 |
课程语种: | 英语 |
中文简介: | 小波去噪的最小描述长度原理可以从标准线性二次设置中扩展到几个方面。我们简要描述了三个扩展: 软阈值、直方图建模和多分量方法。基于归一化最大似然通用建模的 mdl 硬阈值方法可以推广到软阈值收缩, 在某些应用中可以得到较好的结果。在 mdl 直方图去噪方法中, 可以放宽数据参数密度模型的假设。用等边角形直方图对数据的信息和噪声分量进行建模。该方法可以处理不同的噪声分布。在多分量方法中, 模型中包含了多个非噪声组件, 因为除了随机噪声外, 可能还有其他令人不安的信号元素, 或者信息信号由几个不同的信号组成组件, 我们可能想要观察, 分离或删除。在这些情况下, 在模型中添加信息性组件可能会导致比 nml 去噪方法更好的性能。 |
课程简介: | The minimum description length principle in wavelet denoising can be extended from the standard linear-quadratic setting in several ways. We describe briefly three extensions: soft thresholding, histogram modeling and a multicomponent approach. The MDL hard thresholding approach based on the normalized maximum likelihood universal modeling can be extended to include soft thresholding shrinkage, which can be considered to give better results in some applications. In MDL histogram denoising approach the assumptions of the parametric density models for the data can be relaxed. The informative and noise components of the data are modeled with equal bin width histograms. The method can cope with different noise distributions. In multicomponent approach more than one non-noise components are included in the model, because it is possible that in addition to the random noise there may be other disturbing signal elements, or that the informative signal is comprised of several different components which we may want to observe, separate or remove. In these cases adding informative components in the model may result result in better performance than in the NML denoising approach. |
关 键 词: | 小波去噪; 柔性阈值; 建模 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-13:邬启凡(课程编辑志愿者) |
阅读次数: | 55 |