开关的非参数密度估计Nonparametric density estimation by switching |
|
课程网址: | http://videolectures.net/icml08_rooij_nde/ |
主讲教师: | Steven de Rooij |
开课单位: | 中枢维克昆德与信息大学 |
开课时间: | 2008-08-12 |
课程语种: | 英语 |
中文简介: | 根据标准 mdl 和贝叶斯模型的选择, 我们应该 (大致) 倾向于最大限度地减少整体预测误差的模型。但如果目标是预测良好, 很可能取决于模型最有用的样本大小来预测下一个结果。通过重新解释与模型相关的贝叶斯预测策略, "专家", 我们可以使用 "专家跟踪" 的各种算法来改进预测的模型选择, 而无需引入大量的计算开销。 |
课程简介: | According to standard MDL and Bayesian model selection, we should (roughly) prefer the model that minimises overall prediction error. But if the goal is to predict well, it may well depend on the sample size which model is most useful to predict the next outcome. By re-interpreting the Bayesian prediction strategies associated with the models as "experts", we can use the various algorithms for "expert tracking" to improve model selection for prediction without introducing a substantial computational overhead. |
关 键 词: | 贝叶斯模型; 时序预测; 固定份额 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-03:张荧(课程编辑志愿者) |
阅读次数: | 160 |