0


笛卡尔轮廓:一个集合的集合的简洁表示

Cartesian Contour: A Concise Representation for a Collection of Frequent Sets
课程网址: http://videolectures.net/kdd09_jin_ccac/  
主讲教师: Ruoming Jin
开课单位: 肯特州立大学
开课时间: 2009-09-24
课程语种: 英语
中文简介:
在本文中, 我们考虑了一种新的方案, 称为笛卡尔轮廓, 以简洁地表示频繁项集的集合。与现有工程不同的是, 该方案通过涵盖这些项目集的整个集合, 提供了这些项目集的完整视图。更有趣的是, 它在推导频繁模式公式的生成视图方面迈出了第一步, 即少量模式如何相互作用并产生频繁项集的复杂性。对简洁表示问题进行了理论研究, 并将其与二力集覆盖问题联系起来, 证明了其 np 硬度。我们开发了一种新的方法, 利用在频繁项集挖掘、集盖和最大 k 覆盖中开发的技术来逼近最小二维套覆盖问题。此外, 我们还考虑了几种启发式技术来加速笛卡尔轮廓的构建。详细的实验研究证明了我们方法的有效性和有效性。
课程简介: In this paper, we consider a novel scheme referred to as Cartesian contour to concisely represent the collection of frequent itemsets. Different from the existing works, this scheme provides a complete view of these itemsets by covering the entire collection of them. More interestingly, it takes a first step in deriving a generative view of the frequent pattern formulation, i.e., how a small number of patterns interact with each other and produce the complexity of frequent itemsets. We perform a theoretical investigation of the concise representation problem and link it to the biclique set cover problem and prove its NP-hardness. We develop a novel approach utilizing the technique developed in frequent itemset mining, set cover, and max k-cover to approximate the minimal biclique set cover problem. In addition, we consider several heuristic techniques to speedup the construction of Cartesian contour. The detailed experimental study demonstrates the effectiveness and efficiency of our approach.
关 键 词: 频繁模式; 笛卡尔轮廓; 数据挖掘
课程来源: 视频讲座网
最后编审: 2020-06-06:毛岱琦(课程编辑志愿者)
阅读次数: 39