可扩展的图形集群使用随机流:应用到社区发现Scalable Graph Clustering Using Stochastic Flows: Applications to Community Discovery |
|
课程网址: | http://videolectures.net/kdd09_satuluri_sgcusfacd/ |
主讲教师: | Venu Satuluri |
开课单位: | 俄亥俄州立大学 |
开课时间: | 2009-09-14 |
课程语种: | 英语 |
中文简介: | 基于模拟随机流的算法是聚类图问题的一种简单而自然的解决方案, 但由于缺乏可扩展性和输出碎片化, 其广泛使用受到了阻碍。在本文中, 我们提出了一种多层次的图形聚类算法, 该算法使用的是在质量和速度方面都有显著改进的流。该图首先依次粗化到可管理的大小, 并在粗图上执行少量的流模拟迭代。然后对图形进行连续细化, 使用上一个图中的流作为每个中间图形上的简短流模拟的初始化。当我们到达最终的细化图时, 算法就会趋于收敛, 高流量区域被聚集在一起, 没有任何流动的区域就会形成集群的自然边界。在几个真实和合成数据集上的大量实验结果表明, 与最先进的算法相比, 我们的方法是有效的。 |
课程简介: | Algorithms based on simulating stochastic flows are a simple and natural solution for the problem of clustering graphs, but their widespread use has been hampered by their lack of scalability and fragmentation of output. In this article we present a multi-level algorithm for graph clustering using flows that delivers significant improvements in both quality and speed. The graph is first successively coarsened to a manageable size, and a small number of iterations of flow simulation is performed on the coarse graph. The graph is then successively refined, with flows from the previous graph used as initializations for brief flow simulations on each of the intermediate graphs. When we reach the final refined graph, the algorithm is run to convergence and the high-flow regions are clustered together, with regions without any flow forming the natural boundaries of the clusters. Extensive experimental results on several real and synthetic datasets demonstrate the effectiveness of our approach when compared to state-of-the-art algorithms. |
关 键 词: | 模拟随机; 流算法; 聚类图 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-20:zyk |
阅读次数: | 65 |