半监督提升的信息论正则化Information Theoretic Regularization for Semi-Supervised Boosting |
|
课程网址: | http://videolectures.net/kdd09_zheng_itrssb/ |
主讲教师: | Lei Zheng |
开课单位: | 德克萨斯大学 |
开课时间: | 2001-09-14 |
课程语种: | 英语 |
中文简介: | 我们提出了一种新的半监督提升算法, 该算法利用标记和未标记的训练数据, 通过泛型函数梯度下降, 逐步建立弱分类器的线性组合。我们的方法是基于将信息正则化框架扩展到提升, 轴承损耗函数, 将标记数据上的日志丢失与信息理论措施相结合, 对未标记的数据进行编码。尽管信息理论正则化项使优化非凸性, 我们提出了简单的顺序梯度下降优化算法, 并在合成任务、基准任务和现实世界任务中获得了令人印象深刻的改进结果仅使用标记数据的监督提升算法和最先进的半监督提升算法。 |
课程简介: | We present novel semi-supervised boosting algorithms that incrementally build linear combinations of weak classifiers through generic functional gradient descent using both labeled and unlabeled training data. Our approach is based on extending information regularization framework to boosting, bearing loss functions that combine log loss on labeled data with the information-theoretic measures to encode unlabeled data. Even though the information-theoretic regularization terms make the optimization non-convex, we propose simple sequential gradient descent optimization algorithms, and obtain impressively improved results on synthetic, benchmark and real world tasks over supervised boosting algorithms which use the labeled data alone and a state-of-the-art semi-supervised boosting algorithm. |
关 键 词: | 半监督学习; 算法; 信息理论 |
课程来源: | 视频讲座网 |
最后编审: | 2023-12-29:liyy |
阅读次数: | 68 |