0


多任务学习促进与应用程序的网络搜索排名

Multi-Task Learning for Boosting with Application to Web Search Ranking
课程网址: http://videolectures.net/kdd2010_vadrevu_mtlbaw/  
主讲教师: Srinivas Vadrevu
开课单位: 雅虎硅谷研究院
开课时间: 2010-10-01
课程语种: 英语
中文简介:
本文提出了一种新的基于增强决策树的多任务学习算法。我们通过一个联合模型学习几个不同的学习任务, 通过特定于任务的参数显式地解决每个学习任务的细节, 以及它们之间通过共享参数的共性。这将实现隐式数据共享和正则化。我们评估我们在来自多个国家的网络搜索排名数据集上的学习方法。在这方面, 多任务学习特别有帮助, 因为由于编辑判断的成本, 来自不同国家的数据集的大小差别很大。我们的实验验证了共同学习各种任务可以显著提高性能, 并具有惊人的可靠性。
课程简介: In this paper we propose a novel algorithm for multi-task learning with boosted decision trees. We learn several different learning tasks with a joint model, explicitly addressing the specifics of each learning task with task-specific parameters and the commonalities between them through shared parameters. This enables implicit data sharing and regularization. We evaluate our learning method on web-search ranking data sets from several countries. Here, multitask learning is particularly helpful as data sets from different countries vary largely in size because of the cost of editorial judgments. Our experiments validate that learning various tasks jointly can lead to significant improvements in performance with surprising reliability.
关 键 词: 决策树; 算法; 隐式数据; 多任务学习
课程来源: 视频讲座网公开课
最后编审: 2020-05-21:王淑红(课程编辑志愿者)
阅读次数: 127