在合成生物学中使用序贯蒙特卡罗方法作为设计工具Using sequential Monte Carlo approaches as a design tool in synthetic biology |
|
课程网址: | http://videolectures.net/licsb2010_barnes_usm/ |
主讲教师: | Chris Barnes |
开课单位: | 伦敦帝国学院 |
开课时间: | 2010-05-03 |
课程语种: | 英语 |
中文简介: | 在许多工程环境中, 很容易说明我们想要什么, 但很难实现我们想要的结果。潜在的解决方案越多, 就越难确定最佳解决方案。在这里, 我们展示了如何在近似贝叶斯计算框架中解决这个问题。我们的方法的优点是, 它建立在强大的贝叶斯模型选择形式主义的基础上, 包括灵敏度和鲁棒性分析, 无需额外的成本, 并灵活地纳入了不同的设计目标。我们说明了这种方法在细菌双组分系统 (tcs) 中的性能。这些系统使原核生物 (以及一些简单的真核生物和植物) 能够感知它们的环境, 并使它们的内部状态适应不断变化的环境。我们对正统和非正统的 tcs 进行了详细的分析, 并展示了如何合理地构建 tcs, 以显示对细菌感染或生物技术 (如生物燃料) 中遇到的不同刺激的强大和最佳的反应特性。生产和生物修复) 的应用。最后, 我们阐述了我们的方法和最大熵过程之间的联系, 以及比传统工程策略的优势。 |
课程简介: | In many engineering contexts it is easy to state what we want but hard to achieve our desired outcomes. The more potential solutions exist, the harder it becomes to identify optimal solutions. Here we show how this problem can be approached in an approximate Bayesian computation framework. Our approach has the advantage that it builds on the powerful Bayesian model selection formalism, includes sensitivity and robustness analysis at no extra cost, and flexibly incorporates diverse design objectives. We illustrate the performance of this approach in the context of bacterial two-component systems (TCS). These systems enable prokaryotes (and some simple eukaryotes and plants) to sense their environments and adapt their internal state to changing circumstances. We present a detailed analysis of orthodox and unorthodox TCSs and show how we can rationally construct TCS that show robust and optimal response characteristics to different stimuli encountered during bacterial infections or in biotechnological (e.g. biofuels production and bioremediation) applications. We conclude by elaborating on the connections between our approach and maximum-entropy procedures and the advantages over traditional engineering strategies. |
关 键 词: | 机器学习; 蒙特卡罗方法; 计算机科学; 计算生物学 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-04:毛岱琦(课程编辑志愿者) |
阅读次数: | 60 |