0


多视点立体视觉的概率论

Probabilistic account for multi-view stereo
课程网址: http://videolectures.net/lmcv04_fransens_pamvs/  
主讲教师: Rik Fransens
开课单位: 鲁汶大学
开课时间: 2007-02-25
课程语种: 英语
中文简介:
本文介绍了一种从宽基线图像中进行密集深度重建的方法。在宽基线设置中, 使立体对应问题复杂化的固有困难是自遮挡。此外, 我们还必须考虑, 由于非兰伯蒂安效应或离散化错误, 不同图像中的图像像素 (即场景中同一点的投影) 可能会具有不同的颜色值。我们建议采用贝叶斯方法来解决这些问题。在这个框架中, 图像被视为底层 "真实" 图像函数的噪声测量。另外, 图像数据被认为是不完整的, 因为我们不知道特定图像中的哪些像素被排除在其他图像中。我们描述了一个 em 算法, 它在估计所有隐藏数量的值和优化当前深度估计之间迭代。该算法自由参数少, 表现出稳定的收敛行为, 并产生准确的深度估计。
课程简介: This paper describes a method for dense depth reconstruction from wide-baseline images. In a wide-baseline setting an inherent difficulty which complicates the stereo correspondence problem is self-occlusion. Also, we have to consider the possibility that image pixels in different images, which are projections of the same point in the scene, will have different colour values due to non-Lambertian effects or discretization errors. We propose a Bayesian approach to tackle these problems. In this framework, the images are regarded as noisy measurements of an underlying 'true' image-function. Also, the image data is considered incomplete, in the sense that we do not know which pixels from a particular image are occluded in the other images. We describe an EM-algorithm, which iterates between estimating values for all hidden quantities, and optimising the current depth estimates. The algorithm has few free parameters, displays a stable convergence behaviour and generates accurate depth estimates.
关 键 词: 计算机科学; 计算机视觉; 离散; 图像数据
课程来源: 视频讲座网
最后编审: 2021-02-04:nkq
阅读次数: 38