首页遗传学
0


全基因组数据的整合推断遗传网络

Integration of genome-wide data to infer genetic networks
课程网址: http://videolectures.net/mlsb07_gidrol_igwd/  
主讲教师: Xavier Gidrol
开课单位: 基因组功能勘探实验室
开课时间: 2007-11-20
课程语种: 英语
中文简介:
要将生物学理解为一个系统, 就需要分析细胞成分作为模块而不是孤立部分的结构和动力学。需要在技术设备、分析方法和生物模型方面取得进展, 才能破译分子网络, 并最终将细胞作为一个系统进行分析。通过对基因表达谱的聚类分析, 可以分析基因与生物条件之间的 "相关性"。然而, 它仍然是限制性的, 因为它没有揭示监管关系的因果关系。此外, 仅仅从表达分析中推断分子网络是非常困难的, 因为唯一可获得的信息是 mrna 的稳态浓度。这些信息对于描述转录网络的结构和分析其动态和功能特性是必要的, 但还不足以。转录网络的建模应考虑到 rna 浓度、顺式作用序列、转录活性等信息, 因为每个变量都携带独特的生物信息。然而, 由于准确和高度并行测量技术的限制, 这些数据无法例行获取。我们开发了创新的生物阵列, 以足够的准确性、并行性和吞吐量测量相关数据, 以推断转录网络。例如, 我们正在制造包含启动子区域 (人) 的 dna 阵列, 以便在芯片分析上执行 chip, 从而将给定的转录因子、所有假定的结合位点定位到基因组上。然后, 可以返回到 dna 阵列, 以确认芯片数据上从 chip 生成的假设。我们还在开发细胞微阵列, 以表征基因组范围内的上游调节剂, 一方面是特定基因的调控器, 另一方面是转录活性。因此, 在微观和纳米技术方面取得技术突破以产生全面和相关的数据, 与破译转录调控网络和开发系统生物学的分析方法创新同样至关重要。
课程简介: To comprehend biology as a system, one needs to analyze the structure and dynamics of cell components as modules rather than isolated part. Progress in technological devices, analytical methods and biological models are required to decipher molecular networks and eventually analyze the cell as a system. Clustering analysis of gene expression profiles allows the analysis of “ correlation” between genes and biological conditions. However it is yet restrictive as it does not reveal the causality of regulatory relationships. Besides it is very difficult to infer molecular networks from expression profiling only, as the only accessible information is the steady-state concentration of mRNA. This information is necessary but not sufficient to characterize the structure of transcriptional network and analyze its dynamic and functional properties. Modeling of transcriptional networks should take into account information such as RNA concentrations, cis-acting sequences, transcriptional activity and so forth, since each variable carries unique biological information. However due to limitation in accurate and highly parallel measuring technologies, these data are not routinely accessible. We have developed innovative bioarrays to measure with sufficient accuracy, parallelism and throughput relevant data to infer transcriptional networks. For instance, we are manufacturing DNA array containing promoter regions (human) to perform ChIP on chip analysis in order to localize for a given transcription factor, all putative binding sites onto the genome. One can then return to DNA arrays to confirm hypothesis generated from ChIP on chip data. We are also developing cell microarrays to characterize, genome wide, upstream regulators for a given gene on one hand and transcriptional activity on the other hand. Technological breakthroughs in micro and nanotechnologies to generate comprehensive and relevant data are thus as critical as innovation in analytical methods for deciphering transcriptional regulatory networks and developing system biology.
关 键 词: 分子网络; 基因表达谱的聚类分析; 转录
课程来源: 视频讲座网
最后编审: 2020-06-01:吴雨秋(课程编辑志愿者)
阅读次数: 62