首页概率论
   首页遗传学
0


学习监督基因调控推理马尔可夫逻辑网:在人表皮角质形成细胞的抑制调控网络应用

Learning a Markov logic network for supervised gene regulation inference: application to the ID2 regulatory network in human keratinocytes
课程网址: http://videolectures.net/mlsb2012_dalche_buc_learning/  
主讲教师: Florence d Alche-Buc
开课单位: 埃夫里大学
开课时间: 2012-10-23
课程语种: 英语
中文简介:
* * 动机: * * 基因调控网络推理仍然是系统生物学中的一个具有挑战性的问题, 尽管有许多方法。当已经有关于基因调控网络的大量知识时, 监督网络推断也是适当的。这种方法构建了一个二进制分类器, 能够将类 (监管) 分配给有序列的一对基因。一旦学会了, 分类器就可以用来预测新的法规。在这项工作中, 我们探讨了马尔可夫逻辑网络 (mln) 最近推出的理查森 & 多明戈斯 (2004年, 2006年) 的框架。mln 是一个随机马尔可夫网络, 它为一组加权公式进行编码。因此, 它将概率图形模型的特征与一阶逻辑规则的表现力结合起来. \ * * 结果: * * 从一个已知的基因调控网络开始, 该网络参与了角质形成细胞的开关增殖分化, 一套实验转录数据, 和基因的描述, 以 go 术语编码到一阶逻辑, 我们学习了一个马尔可夫逻辑网络, 例如, 一组加权规则, 结束谓词 "调控"。作为附带贡献, 我们定义了性能评估的基本测试列表, 适用于任何二进制分类器。第一次测试包括测量平衡边缘预测问题的平均性能;第二个问题涉及分类器的能力, 一旦通过非对称打包得到增强, 更新给定网络;最后是第三次测试测量该方法预测与新基因新相互作用的能力。结论: 数值研究表明, mln 在为决策的某些可解释性打开大门的同时, 也取得了很好的预测效果。除了提出新法规的能力外, 这种方法还允许用现有知识交叉验证实验数据。
课程简介: **Motivation:** Gene regulatory network inference remains a challenging problem in systems biology despite numerous approaches. When substantial knowledge on a gene regulatory network is already available, supervised network inference also is appropriate. Such a method builds a binary classifier able to assign a class (Regulation/No regulation) to an ordered pair of genes. Once learnt, the classifier can be used to predict new regulations. In this work, we explore the framework of Markov Logic Network (MLN) recently introduced by Richardson & Domingos (2004, 2006). A MLN is a random Markov network that codes for a set of weighted formula. It therefore combines features of probabilistic graphical models with the expressivity of 1st order logic rules.\\ **Results:** Starting from a known gene regulatory network involved in the switch proliferation differentiation of keratinocytes cells, a set of experimental transcriptomic data, and description of genes in terms of GO terms encoded into first order logic, we learn a Markov Logic network, e.g. a set of weighted rules that conclude on the predicate ”regulates”. As a side contribution, we define a list of basic tests for performance assessment, valid for any binary classifier. A first test consists of measuring the average performance on balanced edge prediction problem; a 2nd one deals with the ability of the classifier, once enhanced by asymmetric bagging, to update a given network; finally a 3rd test measures the ability of the method to predict new interactions with new genes. Conclusion: The numerical studies show that MLNs achieve very good prediction while opening the door to some interpretability of the decisions. Additionally to the ability to suggest new regulation, such an approach allows to cross-validate experimental data with existing knowledge.\\ **Availability:** The code will be available on demand.
关 键 词: 马尔可夫过程; 遗传学; 生物学
课程来源: 视频讲座网
最后编审: 2020-06-01:吴雨秋(课程编辑志愿者)
阅读次数: 75