大规模排序问题:一些理论和算法问题Large Scale Ranking Problem: some theoretical and algorithmic issues |
|
课程网址: | http://videolectures.net/mlss06tw_zhang_stai/ |
主讲教师: | Tong Zhang |
开课单位: | 新泽西州立罗格斯大学 |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | 讲座分为两部分。第一部分侧重于网络搜索排名,为此我讨论了基于DCG(折扣累积增益)优化的训练相关性模型。根据此指标,系统输出质量自然由其排名列表顶部附近的性能决定。我将主要关注这个学习问题的各种理论问题。第二部分讨论了在根据BLEU度量(翻译质量的标准度量)优化统计机器翻译系统的评分功能的背景下的相关算法问题。我们的方法将机器翻译视为黑盒子,可以自动优化数百万个系统参数。在此上下文中尚未尝试过这种方法。我将介绍我们的方法和一些初步结果。 |
课程简介: | The talk is divided into two parts. The first part focuses on web-search ranking, for which I discuss training relevance models based on DCG (discounted cumulated gain) optimization. Under this metric, the system output quality is naturally determined by the performance near the top of its rank-list. I will mainly focus on various theoretical issues for this learning problem. The second part discusses related algorithmic issues in the context of optimizing the scoring function of a statistical machine translation system according to the BLEU metric (standard measure of translation quality). Our approach treats machine translation as a black-box, and can optimize millions of system parameters automatically. This has not been attempted before in this context. I will present our method and some initial results. |
关 键 词: | 信息检索; web挖掘; DCG |
课程来源: | 视频讲座网 |
最后编审: | 2020-05-31:吴雨秋(课程编辑志愿者) |
阅读次数: | 22 |