高斯过程潜变量的概率非线性主成分分析Probabilistic Non-Linear Principal Component Analysis with Gaussian Process Latent Variables |
|
课程网址: | http://videolectures.net/mlws04_neil_pnlpc/ |
主讲教师: | Neil D. Lawrence |
开课单位: | 谢菲尔德大学 |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | 众所周知,主成分分析具有基于潜变量模型的基础概率表示。当潜在变量被整合出来并且模型的参数通过最大似然进行优化时,主成分分析(PCA)被恢复。众所周知,整合参数和优化潜在变量的双重方法也会导致PCA。在这种情况下,边际化似然采用高斯过程映射的形式,具有线性协方差函数,从潜在空间到观察空间,我们称之为高斯过程潜变量模型(GPLVM)。这种双概率PCA仍然是线性潜变量模型,但是通过超越内积核作为协方差函数,我们可以开发非线性概率PCA。 |
课程简介: | It is known that Principal Component Analysis has an underlying probabilistic representation based on a latent variable model. Principal component analysis (PCA) is recovered when the latent variables are integrated out and the parameters of the model are optimised by maximum likelihood. It is less well known that the dual approach of integrating out the parameters and optimising with respect to the latent variables also leads to PCA. The marginalised likelihood in this case takes the form of Gaussian process mappings, with linear Covariance functions, from a latent space to an observed space, which we refer to as a Gaussian Process Latent Variable Model (GPLVM). This dual probabilistic PCA is still a linear latent variable model, but by looking beyond the inner product kernel as a for a covariance function we can develop a non-linear probabilistic PCA. |
关 键 词: | 高斯过程; 线性协方差函数; 高斯过程潜变量模型 |
课程来源: | 视频讲座网 |
最后编审: | 2020-05-21:王淑红(课程编辑志愿者) |
阅读次数: | 82 |