基于树的集合模型正则化方法的凸优化Tree Based Ensemble Models Regularization by Convex Optimization |
|
课程网址: | http://videolectures.net/nipsworkshops09_cornelusse_tbe/ |
主讲教师: | Bertrand Cornelusse |
开课单位: | 列日大学 |
开课时间: | 2010-01-19 |
课程语种: | 英语 |
中文简介: | 基于树的集成方法可以看作是从输入输出对的示例中学习内核的一种方式。本文提出了一个正则化框架, 将内核学习算法中未使用的非标准信息结合起来, 以利用输出值的不完整信息和现有问题的一些先验信息。为此, 提出了一个通用凸优化问题, 首先将其定制为用于半监督学习的多种正则化方法, 然后作为利用审查输出值的一种方式, 最后作为利用先前输出值的通用方法有关问题的信息。 |
课程简介: | Tree based ensemble methods can be seen as a way to learn a kernel from a sample of input-output pairs. This paper proposes a regularization framework to incorporate non-standard information not used in the kernel learning algorithm, so as to take advantage of incomplete information about output values and/or of some prior information about the problem at hand. To this end a generic convex optimization problem is formulated which is first customized into a manifold regularization approach for semi-supervised learning, then as a way to exploit censored output values, and finally as a generic way to exploit prior information about the problem. |
关 键 词: | 集成方法; 优化方法; 凸优化 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-29:wuyq |
阅读次数: | 70 |