0


收敛速度加快非精确邻近方法嵌套

Convergence rates of nested accelerated inexact proximal methods
课程网址: http://videolectures.net/nipsworkshops2012_villa_methods/  
主讲教师: Silvia Villa
开课单位: 意大利技术学院
开课时间: 2013-01-16
课程语种: 英语
中文简介:
近梯度法是目前常用的一阶算法, 用于解决几个机器学习和逆问题。我们考虑的情况是, 接近运算符不能以封闭形式提供, 因此通过导致嵌套算法的迭代过程进行近似。我们首次证明, 依靠一个合适的近似概念, 给出了内部循环的显式停止规则, 可以证明双环算法的收敛速度对于一类大的近似加速过程算法。报告了与基准初价双算法的实验比较, 证实了良好的经验性能。
课程简介: Proximal gradient methods are popular first order algorithms currently used to solve several machine learning and inverse problems. We consider the case where the proximity operator is not available in closed form and is thus approximated via an iterative procedure leading to a nested algorithm. For the first time, we show that relying on an appropriate notion of approximations, which gives an explicit stopping rule for the inner loop, convergence rates for the two-loops algorithm can be proved for accelerated procedures for a large class of approximation algorithms. An experimental comparison with a benchmark primal-dual algorithm is reported and confirms a good empirical performance.
关 键 词: 优化方法; 原始对偶算法; 嵌套
课程来源: 视频讲座网
最后编审: 2020-06-01:吴雨秋(课程编辑志愿者)
阅读次数: 42