0


无线网络中的随机矩阵

Random Matrices in Wireless Flexible Networks
课程网址: http://videolectures.net/nthfs_couillet_matrices/  
主讲教师: Romain Couillet
开课单位: 法国高等电力学院
开课时间: 2012-04-04
课程语种: 英语
中文简介:
多用户多天线通信系统以及大型雷达阵列的推广, 使电信和阵列处理领域的研究人员和工程师能够应对大维度随机问题。这些系统中的随机参数不再是简单变量, 而是潜在的大向量和矩阵。本教程的第一个目的是对随机矩阵理论的有限和渐近方面的主要工具及其在无线通信和信号处理领域的应用进行严格的介绍。复杂通信网络中容量估计的具体示例, 以及改进的信号检测和估计 (统计推断) 测试将作为本教程第一部分的实际应用。 本教程的大纲如下: 随机矩阵理论: 从小系统到大系统, 限制特征值分布, 确定性等价物, 频谱分析和统计推断。应用: mimo 和 cdma 信道中的容量估计、大型通信系统的泛化、信号检测测试和阵列处理的统计推断方法 (doa、功率估计)。 剩下的: 在电信 (小蜂窝网络)、阵列处理 (鲁棒估计、位置跟踪)、信号处理 (故障诊断) 等方面正在进行的研究前景。
课程简介: The generalization of multi-user multi-antenna communication systems as well as large radar arrays has lead researchers and engineers in telecommunications and array processing to cope with large dimensional stochastic problems. The random parameters in these systems are no longer simple variables but potentially large vectors and matrices. The first purpose of this tutorial is to provide a rigorous introduction to the major tools of both finite and asymptotic aspects of Random Matrix Theory, and their application to the field of Wireless Communications and Signal Processing. Specific examples of capacity estimation in complex communication networks, as well as improved signal detection and estimation (statistical inference) tests will be used as practical applications of the first part of the tutorial. The outline of the tutorial is as follows: Random Matrix Theory: from small to large systems, limiting eigenvalue distributions, deterministic equivalents, spectrum analysis and statistical inference. Applications: capacity estimation in MIMO and CDMA channels, generalization to large communication systems, signal detection tests and statistical inference methods for array processing (DoA, power estimation). What's left: outlook on on-going research in telecommunication (small cell networks), array processing (robust estimation, position tracking), signal processing (failure diagnosis).
关 键 词: 信息理论; 数字信号处理; 阵列处理
课程来源: 视频讲座网
最后编审: 2020-05-22:王淑红(课程编辑志愿者)
阅读次数: 536