0


医学图像的层次注释

Hierarchical Annotation of Medical Images
课程网址: http://videolectures.net/sikdd08_dimitrovski_hami/  
主讲教师: Ivica Dimitrovski
开课单位: 约瑟夫·斯特凡学院
开课时间: 2008-11-07
课程语种: 英语
中文简介:
在本文中,我们描述了2008 CLEF跨语言图像检索活动(ImageCLEF)的自动医疗注释任务的方法。根据IRMA代码,数据包括12076个完全注释的图像。这项工作的重点是从图像中提取特征和分层多标签分类的过程。为了从图像中提取特征,我们使用了一种称为边缘局部分布的技术。利用这种技术,每个图像用80个变量描述。分类任务的目标是根据IRMA代码对图像进行分类。 IRMA代码按层次结构组织。因此,作为分类器,我们选择了能够处理这种类型数据的预测聚类树(PCT)的扩展。此外,我们构建了使用PCT作为基本分类器的集合(套袋和随机森林)。
课程简介: In this paper, we describe an approach for the automatic medical annotation task of the 2008 CLEF cross-language image retrieval campaign (ImageCLEF). The data comprise 12076 fully annotated images according to the IRMA code. This work is focused on the process of feature extraction from images and hierarchical multi-label classification. To extract features from the images we used a technique called: local distribution of edges. With this techniques each image was described with 80 variables. The goal of the classification task was to classify an image according to the IRMA code. The IRMA code is organized hierarchically. Hence, as classifer we selected an extension of the predictive clustering trees (PCTs) that is able to handle this type of data. Further more, we constructed ensembles (Bagging and Random Forests) that use PCTs as base classifiers.
关 键 词: 图像分析; 计算机视觉; CLEF跨语言图像检索运动
课程来源: 视频讲座网
最后编审: 2020-07-28:yumf
阅读次数: 108