0


基于树的集成方法的基因调控网络推理

Gene regulatory network inference using tree-based ensemble methods
课程网址: http://videolectures.net/solomon_geurts_gene/  
主讲教师: Pierre Geurts
开课单位: 列日大学
开课时间: 2013-07-09
课程语种: 英语
中文简介:
计算系统生物学的一个紧迫的开放问题是阐明遗传调控网络的拓扑结构。在本次演讲中,我们首先提出了一种名为GENIE3的方法,用于从表达数据中无监督地推断基因调控网络。该方法将p基因之间的调节网络的预测分解为p个不同的特征选择(回归)问题,并使用从基于树的集合方法(例如随机森林)获得的特征重要性分数来解决这些问题中的每一个。在介绍该方法之后,我们将在逆向工程评估和方法对话(DREAM)挑战的背景下讨论其性能,这是一项年度国际竞赛,旨在评估GRN推理算法对模拟和实际数据的基准。 GENIE3在DREAM4 In Silico Multifactorial挑战和DREAM5网络推理挑战中表现最佳。然后,我们提出了处理时间序列表达和系统遗传数据的方法的两种改编。在后一种情况下,该方法的良好性能可以从DREAM5系统遗传学挑战和最近的StatSeq基准测试数据中得到说明。
课程简介: One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks. In this talk, we first present a method, called GENIE3, for the unsupervised inference of gene regulatory networks from expression data. This method decomposes the prediction of a regulatory network between p genes into p different feature selection (regression) problems and solves each of these problems using feature importance scores obtained from tree-based ensemble methods such as Random Forests. After a presentation of the method, we discuss its performance in the context of the Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenges, which is an annual international competition aiming at the evaluation of GRN inference algorithms on benchmarks of simulated and real data. GENIE3 was best performer on the DREAM4 In Silico Multifactorial challenge and on the DREAM5 Network Inference challenge. We then present two adaptations of the method for handling time series expression and systems genetics data. In the latter case, the good performance of the method is illustrated on the data from the DREAM5 systems genetics challenge and the more recent StatSeq benchmark.
关 键 词: 计算生物学; 遗传调控网络; 树的集合方法
课程来源: 视频讲座网
最后编审: 2020-05-31:吴雨秋(课程编辑志愿者)
阅读次数: 61