0


潜变量模型生成核的非线性映射

Nonlinear Mappings for Generative Kernels on Latent Variable Models
课程网址: http://videolectures.net/ssspr2010_bicego_nmg/  
主讲教师: Manuele Bicego
开课单位: 维罗纳大学
开课时间: 2010-09-13
课程语种: 英语
中文简介:
在过去几年中,生成核已经成为混合判别和生成方法的有效方法。特别是,在本次演讲中,我们关注的是在具有潜在变量的生成模型上定义的内核(例如,隐马尔可夫模型中的状态)。这些内核的基本思想是通过内部产品在特征空间中比较对象,其中维度与模型的潜在变量相关。我们展示了如何通过空间的非线性归一化来增强这些内核,即能够利用其辨别特性的空间维度的非线性映射。我们研究了三种可能的非线性映射,对于两种基于HMM的生成核,在不同的序列分类问题中对它们进行测试,结果非常有希望。
课程简介: Generative kernels have emerged in the last years as an effective method for mixing discriminative and generative approaches. In particular, in this talk, we focus on kernels defined on generative models with latent variables (e.g. the states in a Hidden Markov Model). The basic idea underlying these kernels is to compare objects, via a inner product, in a feature space where the dimensions are related to the latent variables of the model. We show how to enhance these kernels via a nonlinear normalization of the space, namely a nonlinear mapping of space dimensions able to exploit their discriminative characteristics. We investigated three possible nonlinear mappings, for two HMMbased generative kernels, testing them in different sequence classification problems, with really promising results.
关 键 词: 潜变量模型; ; 非线性映射
课程来源: 视频讲座网
最后编审: 2021-09-20:zyk
阅读次数: 50