图形相似,I-分歧和熵流形对齐Graph Similarity, I-Divergences and Entropic Manifold Alignment |
|
课程网址: | http://videolectures.net/ssspr2010_escolano_gsi/ |
主讲教师: | Francisco Escolano |
开课单位: | 阿利坎特大学 |
开课时间: | 2010-09-13 |
课程语种: | 英语 |
中文简介: | 本文将图形匹配问题称为非刚性流形对齐问题。低维流形是从通勤时间嵌入, 并通过相干点漂移进行匹配。虽然已经有许多尝试, 以这种方式实现图形匹配, 在本文中, 我们提出了一个新的信息理论度量对齐, 所谓的对称归一化的正则熵方的变化。我们成功地测试了具有挑战性的数据库上流形之间的这种不同度量。该方法是利用旁路 leonenko 熵函数估计的。此外, 我们证明了所提出的测量在与流形相关的概率密度函数之间产生一个正定核, 从而在变形后在图之间产生一个正定核。 |
课程简介: | In this paper we cast the problem of graph matching as one of non-rigid manifold alignment. The low dimensional manifolds are from the commute time embedding and are matched though coherent point drift. Although there have been a number of attempts to realise graph matching in this way, in this paper we propose a novel information-theoretic measure of alignment, the so-called symmetrized normalized-entropy-square variation. We succesfully test this dissimilarity measure between manifolds on a a challenging database. The measure is estimated by means of the bypass Leonenko entropy functional. In addition we prove that the proposed measure induces a positive definite kernel between the probability density functions associated with the manifolds and hence between graphs after deformation. |
关 键 词: | 计算机科学; 模式识别; 人工智能科学系 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-20:zyk |
阅读次数: | 61 |