逻辑Ⅱ24.242 Logic |
|
课程网址: | http://ocw.mit.edu/courses/linguistics-and-philosophy/24-242-logi... |
主讲教师: | Prof. Vann McGee |
开课单位: | 麻省理工学院 |
开课时间: | 信息不详。欢迎您在右侧留言补充。 |
课程语种: | 英语 |
中文简介: | 本课程从对可计算性理论的介绍开始, 然后对其最杰出的结果进行详细的研究: k户 g ö del 定理, 对于任何一个真正的算术陈述系统, 我们可能会提出作为一个公理化的基础证明算术的真理, 会有一些算术陈述, 我们可以认识到是真实的, 尽管它们并不遵循公理系统。我认为, 这是整个逻辑历史上最重要的单一结果, 不仅本身很重要, 而且对证明它的技术的许多应用也很重要。我们将讨论其中的一些应用: 其中教会定理, 即没有算法来决定公式在谓词演算中何时有效;塔尔斯基的定理, 即一种语言的真实句子集在该语言中是不可定义的;gg ö del 的第二个不完全性定理, 它说, 没有一致的公理系统可以证明它自己的一致性。 |
课程简介: | This course begins with an introduction to the theory of computability, then proceeds to a detailed study of its most illustrious result: Kurt Gödel's theorem that, for any system of true arithmetical statements we might propose as an axiomatic basis for proving truths of arithmetic, there will be some arithmetical statements that we can recognize as true even though they don't follow from the system of axioms. In my opinion, which is widely shared, this is the most important single result in the entire history of logic, important not only on its own right but for the many applications of the technique by which it's proved. We'll discuss some of these applications, among them: Church's theorem that there is no algorithm for deciding when a formula is valid in the predicate calculus; Tarski's theorem that the set of true sentence of a language isn't definable within that language; and Gödel's second incompleteness theorem, which says that no consistent system of axioms can prove its own consistency. |
关 键 词: | 逻辑; 可计算性; 系统; 算术; 公理基础; 证明真理的算法; 应用历史; 算法; 公式; 有效; 谓词演算 |
课程来源: | 麻省理工大学公开课 |
最后编审: | 2016-03-23:cmh |
阅读次数: | 63 |